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Introduction

Karyotype and chromosome copy numbers

e Gene copy number is tightly
regulated

e Humans: 22 pairs (autosomal)+
1 pair sexual chromosomes
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e At the chromosomal resolution,
the karyotype is a visual tool to
check for abnormalities

e Deviations from the reference

number (2) result in massive Human karyotype (fom NsF)
disorders
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Introduction

Sub-Chromosomal Aberrations

deletion duplication translocation

Mapping aberrations at low resolution has been a technical challenge in
cytogenetics
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Introduction

Mapping using Fluorescent In Situ Hybridization

o Consider a known sequence of
~ 1 Mb and link it with a
fluorochrome

e Mix it in presence of denatured
chromosomes

o Check if the probe hybridizes
somewhere

e If the probe comes from another
chromosome, map the
aberration

Going FISHing ? (from NsF)
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Introduction Single Profiles Multiple profiles Computing

Multicolor Fish and Comparative Genomic Hybridization

e Consider a set of reference
sequences of size ~ xMb

e Link them with different
fluorochromes

e Mix in presence of denatured
chromosomes

o Check if the probes hybridize
somewhere

e If the probe comes from another
chromosome, map the
aberrations
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Introduction Single Profiles Multiple profiles

Computing

Application of the microarray technology to CGH

e The microarray technology was
mainly developed for expression
data. Application to CGH in
2003 (array-CGH)

e Probes are ~ kbs long and fixed
on a glass support
e Two genomes are compared by

measuring the relative quantity
of DNA at different loci
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Array CGH allows a genome-wide blind search for ~kbs aberrations J
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Introduction

Tracking Genomic Aberrations in Cancer Genomes

Amplifications
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Introduction

Tracking Genomic Variation in Healthy Genomes

e In 2005 a study published the
map of Copy Number Variations
in healthy individuals

e Most initial studies of genetic
variation concentrated on
individual nucleotide sequences
(SNPs)

e CNVs have become new genetic
markers to study human
diseases and evolution

from http://www.nature.com/
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Single Profiles
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@® Statistical Analysis of single profiles
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Single Profiles

Nature of array CGH data

e The signal Y; is a log, ratio of P—
fluoresence organized along the
genome (t)

Log2Ratio
°

e When Y; ~ 0 the region has no s
imbalance between 4
test-reference

e When Y; > 0 (resp < 0) the 1
test genome shows gains (resp.
deletions)
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Introduction Single Profiles Multiple profiles Computing

Modeling & Computing Strategies

e Hidden Markov models [2, 7, 6]
- Introduce a hidden Markovian sequence to model copy number
- Recover the hidden sequence by Forward-Backward Algorithm
e Segmentation Models [10, 8]

- Suppose that there exist abrupt changes in the signal
- Detect jumps using a partitioning algorithm

Many comparative studies have shown the efficiency of segmentation
methods on those data [12] }

We focus on computational aspects of segmentations J
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Single Profiles

Segmentation models: definitions and notations

e \We observe a Gaussian process Y = {Y1,..., Y,} with
Yt ~ N(Mt, 0'2).

e We suppose that there exists K 4 1 change-points ty < ... < ty

such that the mean of the signal is constant between two changes
and different from a change to another.

o Iy =]tk_1, tx]: interval of stationarity, i, the mean of the signal
between two changes:

Vte b, Yi=pux+ Er, E~N(0,0°).
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Single Profiles

Calling Segments status by segmentation/clustering

e Segments can be in different states (Deleted, Normal, Amplified)
which impacts the level of segments
e The idea is to introduce a hidden indicator variable Zj, such that

Vt € I, if Zky =1, Ye=mp+ E, E ~N(0,0%).

e Segment levels are shared across the genome (Mgejeted is the same
for all deleted segments for instance).

‘Genomic postion

Log2Ratio
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Single Profiles

Parameters and estimation strategy

The parameters: T = {to,...,tx}, = {p1,..., ux} and o2.

The estimation is done for a given K which is estimated afterwards.
The log-likelihood of the model is:

K ty
log L (Y; T, p,0%) = Y > Flyei i, 0%).
k=1t=t,_1+1

When K and T are known, how to estimate p 7

When K is known, how to estimate T ?

How to choose K ?
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Single Profiles

Parameter estimation

e When K and T are known the estimation of u is straightforward:

1 tk
//Zk - /t: o /t: Z .yt7
k k—1 =ty +1

e Find T such that:

T-= arg max {IogﬁK(Y; T, i, 02)} .
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Single Profiles

Dynamic Programming to optimize the log-likelihood

Partition n data points into K segments: complexity O(n¥).

DP reduces the complexity to O(n?) when K is fixed.

Shortest path problem: "subpaths of optimal paths are themselves
optimal”.

RSSk(7,j) cost of the path connecting i to j in k segments:

J
Z (yt 7}71]')23
t=i+1
VI<k<K-1 RSSia(lj) = min {RSSk(1,h)+RSSi(h+1,))}.
SNyJ

YO <i<j<n, RSSi(i,j)
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Single Profiles

Model selection for segmentation

The number of segments K should be estimated:

~

K= argml?x{logEK(Y;:l\' [, 52) — ,Bpen(K)}.

Difficulty: CK 1 possible partitions for a model with K segments.

¢ Non-asymptotic theory provides a general form for pen(K) [5]:

K , n
Bpen(K) = o X (cl + o log R) .

Other methods are based on an adaptive estimation of K [4, 10] or
on a modification of the BIC [13]
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Multiple profiles

Outline

© Statistical analysis of multiple profiles
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Introduction Single Profiles Multiple profiles Computing

Using Multiple Arrays to assess CNA/CNV

o Population-based analysis for
cancer and human genetics
e Multiple Arrays Analysis
Find breaks using all samples
Find reccurrent breaks
e What is specific/common 7

Shared biases
Specific CN

Use multiple samples to increase the
power of detection
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Multiple profiles

Modelling individual-specific breakpoints [10]

e Y;(t): the signal for individual i = 1, .../ with segments {Z}}
vVt € I,';, Yi(t) = pix +€i(t), €i(t) ~ N(0,52).

o u; specific levels of segments

o T; specific incidence matrix of the breaks
Yi=Tipu; +E;
e Signal levels associated to CN status are shared across arrays:
{Z,ip =1}, Vt € I}, Yi(t) = m, +&i(t), ei(t) ~ N(0,07).

Y,' = T,-Z,-m + E,'
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Multiple profiles

Segmentation of Multiple Arrays [9]

e The RSS is additive wrt the series and to the number of segments.

Ik

RSSk(p, T) =Y = Tul? = Y3 RSS[(1;,T))
i=1 k=1

e Global DP would lead to a O(n?/?) complexity.
e But there is a constraint : ) . k; = K, (K unknown) thus:

B odi

/
{TIIQ} RSSK(Tvl"’) - k1+.m—irl:,:/< {Z 4 RSSL,(THHI)} '
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Multiple profiles

A two-stage Dynamic Programming procedure - 1

e Find all optimal breaks for each profile using a “classical DP"
e T(k;) the set of optimal breaks with k; segments for profile i.

e Find '/I:i(k,-), Vki =1,..., kmax Segments by minimizing
RSS;'(i(T,-, ;) for each series.

Vi e [1,1] {T; f;} = argmin {RSSL (T, p;)}

) i
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Multiple profiles

A two-stage Dynamic Programming procedure - 2

e Optimal allocation of segments to series

Viell: ],

{(k,....,k} = argmin RSSk ('T'l(kl),...,'T'"(k,-)>
kit + k=K

T(K) = {?1@1),...,?’(2,)}.

e This procedure is optimal with a complexity O(In?kmax + k2. 13).

max
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Multiple profiles

Enrich the model to account for common genomic biases ?

e There exist common genomic biases that are shared by all profiles.
How to correct them ?

e The simplest way to model this trend is to introduce a common
background function b(t) such that:

Ve €lti_y, ti], Yi(t) = pix + b(t) + Ei(t).

e This produces a new model that mixes piece-wise constant functions
and other undetermined functions
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Multiple profiles

Regularization of the trend using splines

e Control the second derivative of b using a penalty:

1
min { Y — Tp — Xb|2 + )\I/ [b”(t)]2 dt} :
T,10,0 2

o {W}j = W(tx) a n-dim. set of natural spline functions: b = W6
1 2 T
min < = |[Y —Tp— XWO|5+76"Q0 ¢,
T,10,0 2

e The solution is given by:

0 = {WTW + m}_l w’ (xT [Y - Tu[’ﬂ //) .
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Outline

O Adaptation to high dimensional computing
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Pruning Strategy

e Pruning Strategies reduce the computational burden of Dynamic
Programming ([11, 3] )

e The idea is to prune the set of candidates while computing potential
segmentations

e The complexity is reduced from O(Kn?) to O(n) or O(nlog(n))

e This linearization allows segmentation to be used on very long
signals (microarrays, sequencing)
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Parallelization in cghseg

e cghseg is a R-package
dedicated to segmentation

Data Analysis in the Distributed World

e Most computers have multi-core
architectures (from laptops to
many-core servers)

e |t has become essential to adapt
software to computer
architectures

Parallel

Use straightforward parallelization to
perform segmentation on
large-numerous signals

O’REILLY*® Q. Ethan McCallum & Stephen Weston
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Computing scheme

Y
Individual Segmentations Global Segmentation
- For a given level of segments - Estimate the level of segments
- Use DP on each profile - Use DP to find the best global segmentation
- Propose potential segmentations - Perform model selection
Pruning for each segmentation High number of profiles

Can be paralellized !
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Parallelization in cghseg

20— . ‘
e Compare the observed speedup 258 profles —1— S
. 8 1024 profiles —x— A

to theoretical speedup Wl Amcahe s |

1 - _ e
(Amdahl’s law [1]) e s ]

e The speedup of cghseg follows
the Amdahl’s law when the
number of profiles is high

Speedup

e The gain decreases with the ;o . ‘ 1
number of profiles due to ee bt of GPU cores “
overheads associated with the
used of the parallel R-package

total time ~ time(sequential) +
time(parallel)/nb of cores
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Single Profiles Multiple profiles Computing

Next Gen. Computing/Next Gen. experiments

e Considering multiple Arrays allows the joint assessment of Copy
Number Aberrations/Variations at the cohort level

e We solve the computational issue of joint segmentation using a X2
Stage DP with linearization

e The method is implemented in the cghseg package

n (observations/profile) 20,000 100, 000
I (number of profiles) 256 512 1024 | 256 512 1024
Average CPU time (min) | 6 15 54 | 31 70 253
Memory usage (Gb) 04 08 18 |17 37 79
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Conclusions

The analysis of copy number profiles has been very challenging from
a statistical and computational point of view

When providing methods, check the scalability (500K probes)

Developments had to be done using mathematical4+computing skills

e Many question arise from these data, in particular the impact of the
inter-individual variability

Project: shift towards functional mixed models for genomics
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