Statistical and computational challenges for population-based segmentation of copy-number profiles

Guillem Rigaill¹, Vincent Miele² and Franck Picard²

¹Statistique et Génome, UMR CNRS 8071, USC INRA Université d'Evry, France ² Biométrie et Biologie Evolutive, UMR CNRS 5558 Université Lyon 1, France

Centre Blaise Pascal, Lyon November 2013

Introduction	troduction Single Profiles		Computing	References

Outline

- **2** Statistical Analysis of single profiles
- 3 Statistical analysis of multiple profiles
- 4 Adaptation to high dimensional computing

- Gene copy number is tightly regulated
- Humans: 22 pairs (autosomal)+ 1 pair sexual chromosomes
- At the chromosomal resolution, the karyotype is a visual tool to check for abnormalities
- Deviations from the reference number (2) result in massive disorders

Human karyotype (from NSF)

- Gene copy number is tightly regulated
- Humans: 22 pairs (autosomal)+ 1 pair sexual chromosomes
- At the chromosomal resolution, the karyotype is a visual tool to check for abnormalities
- Deviations from the reference number (2) result in massive disorders

Human karyotype (from NSF)

- Gene copy number is tightly regulated
- Humans: 22 pairs (autosomal)+ 1 pair sexual chromosomes
- At the chromosomal resolution, the karyotype is a visual tool to check for abnormalities
- Deviations from the reference number (2) result in massive disorders

Human karyotype (from NSF)

- Gene copy number is tightly regulated
- Humans: 22 pairs (autosomal)+ 1 pair sexual chromosomes
- At the chromosomal resolution, the karyotype is a visual tool to check for abnormalities
- Deviations from the reference number (3) result in massive disorders

			Trip	loidy		
1	2	3				
			111			
6	,	8	9	10	11	12
13	14	15		16	17	18
19	20	21	22	xxx		XXY

Human karyotype (from NSF)

Sub-Chromosomal Aberrations

Mapping aberrations at low resolution has been a technical challenge in cytogenetics

Mapping using Fluorescent In Situ Hybridization

- Consider a known sequence of \sim 1 Mb and link it with a fluorochrome
- Mix it in presence of denatured chromosomes
- Check if the probe hybridizes somewhere
- If the probe comes from another chromosome, map the aberration

Going FISHing ? (from NSF)

Multicolor Fish and Comparative Genomic Hybridization

- Consider a set of reference sequences of size ~ xMb
- Link them with different fluorochromes
- Mix in presence of denatured chromosomes
- Check if the probes hybridize somewhere
- If the probe comes from another chromosome, map the aberrations

Application of the microarray technology to CGH

- The microarray technology was mainly developed for expression data. Application to CGH in 2003 (array-CGH)
- Probes are \sim kbs long and fixed on a glass support
- Two genomes are compared by measuring the relative quantity of DNA at different loci

Array CGH allows a genome-wide blind search for \sim kbs aberrations

Tracking Genomic Aberrations in Cancer Genomes

Tracking Genomic Variation in Healthy Genomes

- In 2005 a study published the map of Copy Number Variations in healthy individuals
- Most initial studies of genetic variation concentrated on individual nucleotide sequences (SNPs)
- CNVs have become new genetic markers to study human diseases and evolution

from http://www.nature.com/

Single Profiles	Computing	

Outline

2 Statistical Analysis of single profiles

3 Statistical analysis of multiple profiles

4 Adaptation to high dimensional computing

Nature of array CGH data

- The signal Y_t is a log₂ ratio of fluoresence organized along the genome (t)
- When $Y_t \sim 0$ the region has no imbalance between test-reference
- When $Y_t > 0$ (resp < 0) the test genome shows gains (resp. deletions)
- How many segments ? where ? status ?

Modeling & Computing Strategies

- Hidden Markov models [2, 7, 6]
 - Introduce a hidden Markovian sequence to model copy number
 - Recover the hidden sequence by Forward-Backward Algorithm
- Segmentation Models [10, 8]
 - Suppose that there exist abrupt changes in the signal
 - Detect jumps using a partitioning algorithm

Many comparative studies have shown the efficiency of segmentation methods on those data [12]

We focus on computational aspects of segmentations

Segmentation models: definitions and notations

• We observe a Gaussian process $\mathbf{Y} = \{Y_1, \dots, Y_n\}$ with

$$Y_t \sim \mathcal{N}(\mu_t, \sigma^2).$$

- We suppose that there exists K + 1 change-points $t_0 < \ldots < t_K$ such that the mean of the signal is constant between two changes and different from a change to another.
- *I_k* =]*t_{k-1}*, *t_k*]: interval of stationarity, μ_k the mean of the signal between two changes:

$$\forall t \in I_k, \ Y_t = \mu_k + E_t, \ E_t \sim \mathcal{N}(0, \sigma^2).$$

	Single Profiles	Computing	

Calling Segments status by segmentation/clustering

- Segments can be in different states (Deleted, Normal, Amplified) which impacts the level of segments
- The idea is to introduce a hidden indicator variable Z_{kp} such that

$$\forall t \in I_k, \text{ if } Z_{kp} = 1, \ Y_t = m_p + E_t, \ E_t \sim \mathcal{N}(0, \sigma^2).$$

• Segment levels are shared across the genome (*m*_{deleted} is the same for all deleted segments for instance).

Single Profiles	Computing	

Parameters and estimation strategy

- The parameters: $\mathbf{T} = \{t_0, \dots, t_K\}$, $\boldsymbol{\mu} = \{\mu_1, \dots, \mu_K\}$ and σ^2 .
- The estimation is done for a given K which is estimated afterwards.
- The log-likelihood of the model is:

$$\log \mathcal{L}_{\mathcal{K}}(\mathbf{Y};\mathbf{T},\boldsymbol{\mu},\sigma^2) = \sum_{k=1}^{\mathcal{K}} \sum_{t=t_{k-1}+1}^{t_k} f(y_t;\mu_k,\sigma^2).$$

- When K and **T** are known, how to estimate μ ?
- When K is known, how to estimate **T** ?
- How to choose K ?

Single Profiles	Computing	

Parameter estimation

• When K and **T** are known the estimation of μ is straightforward:

$$\hat{\mu}_{k} = \frac{1}{\hat{t}_{k} - \hat{t}_{k-1}} \sum_{t=\hat{t}_{k-1}+1}^{\hat{t}_{k}} y_{t},$$

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{k=1}^{K} \sum_{t=\hat{t}_{k-1}+1}^{\hat{t}_{k}} (y_{t} - \hat{\mu}_{k})^{2}.$$

• Find $\widehat{\boldsymbol{\mathsf{T}}}$ such that:

$$\widehat{\mathbf{T}} = rg\max_{\mathbf{T}} \left\{ \log \mathcal{L}_{\mathcal{K}}(\mathbf{Y}; \mathbf{T}, \boldsymbol{\mu}, \sigma^2)
ight\}.$$

Dynamic Programming to optimize the log-likelihood

- Partition *n* data points into *K* segments: complexity $\mathcal{O}(n^K)$.
- DP reduces the complexity to $\mathcal{O}(n^2)$ when K is fixed.
- Shortest path problem: "subpaths of optimal paths are themselves optimal".
- $RSS_k(i,j)$ cost of the path connecting *i* to *j* in *k* segments:

$$\begin{aligned} \forall 0 \le i < j \le n, \ \mathsf{RSS}_1(i,j) &= \sum_{t=i+1}^j (y_t - \bar{y}_{ij})^2, \\ \forall 1 \le k \le K - 1, \ \mathsf{RSS}_{k+1}(1,j) &= \min_{1 \le h \le j} \{\mathsf{RSS}_k(1,h) + \mathsf{RSS}_1(h+1,j)\}. \end{aligned}$$

Single Profiles	Computing	

Model selection for segmentation

• The number of segments K should be estimated:

$$\widehat{\mathcal{K}} = \arg \max_{\mathcal{K}} \left\{ \log \mathcal{L}_{\mathcal{K}}(\mathbf{Y}; \widehat{\mathbf{T}}, \widehat{\boldsymbol{\mu}}, \widehat{\sigma}^2) - \beta \mathsf{pen}(\mathcal{K})
ight\}.$$

- Difficulty: C_{n-1}^{K-1} possible partitions for a model with K segments.
- Non-asymptotic theory provides a general form for *pen*(*K*) [5]:

$$\beta pen(K) = \frac{K}{n} \sigma^2 \times \left(c_1 + c_2 \log \frac{n}{K}\right).$$

 Other methods are based on an adaptive estimation of K [4, 10] or on a modification of the BIC [13]

	Multiple profiles	Computing	

Outline

2 Statistical Analysis of single profiles

- 3 Statistical analysis of multiple profiles
- 4 Adaptation to high dimensional computing

Using Multiple Arrays to assess CNA/CNV

- Population-based analysis for cancer and human genetics
- Multiple Arrays Analysis Find breaks using all samples Find *reccurrent* breaks
- What is specific/common ? Shared biases Specific CN

Use multiple samples to increase the power of detection

Modelling individual-specific breakpoints [10]

• $Y_i(t)$: the signal for individual i = 1, ...I with segments $\{\mathcal{I}_k^i\}$

$$\forall t \in \mathcal{I}_k^i, \ Y_i(t) = \mu_{ik} + \varepsilon_i(t), \ \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2).$$

- μ_i specific levels of segments
- **T**_i specific incidence matrix of the breaks

$$\mathbf{Y}_i = \mathbf{T}_i \boldsymbol{\mu}_i + \mathbf{E}_i$$

• Signal levels associated to CN status are shared across arrays:

$$\{Z_{kp}^{i}=1\}, \ \forall t \in \mathcal{I}_{k}^{i}, \ Y_{i}(t)=m_{p}+arepsilon_{i}(t), \ arepsilon_{i}(t)\sim\mathcal{N}(0,\sigma^{2}).$$

$$\mathbf{Y}_i = \mathbf{T}_i \mathbf{Z}_i \mathbf{m} + \mathbf{E}_i$$

Segmentation of Multiple Arrays [9]

• The RSS is additive wrt the series and to the number of segments.

$$RSS_{\mathcal{K}}(\boldsymbol{\mu},\mathbf{T}) = \|\mathbf{Y}-\mathbf{T}\boldsymbol{\mu}\|^2 = \sum_{i=1}^{l} \sum_{k=1}^{k_i} RSS_k^i(\boldsymbol{\mu}_i,\mathbf{T}_i)$$

- Global DP would lead to a $\mathcal{O}(n^2 I^2)$ complexity.
- But there is a constraint : $\sum_{i} k_i = K$, (K unknown) thus:

$$\min_{\{\mathbf{T},\boldsymbol{\mu}\}} RSS_{\mathcal{K}}(\mathbf{T},\boldsymbol{\mu}) = \min_{k_1+\ldots+k_l=\mathcal{K}} \left\{ \sum_{i=1}^{l} \min_{\mathbf{T}_i,\boldsymbol{\mu}_i} RSS_{k_i}^i(\mathbf{T}_i,\boldsymbol{\mu}_i) \right\}.$$

A two-stage Dynamic Programming procedure - 1

- Find all optimal breaks for each profile using a "classical DP"
- $\widehat{\mathbf{T}}^{i}(k_{i})$ the set of optimal breaks with k_{i} segments for profile *i*.
- Find Tⁱ(k_i), ∀k_i = 1,..., k_{max} segments by minimizing *RSS*ⁱ_{Ki}(T_i, μ_i) for each series.

$$\forall i \in [1, I] \; \{ \widehat{\mathbf{T}}_i, \widehat{\boldsymbol{\mu}}_i \} = \arg\min_{\mathbf{T}_i, \boldsymbol{\mu}_i} \{ RSS^i_{k_i}(\mathbf{T}_i, \boldsymbol{\mu}_i) \}$$

A two-stage Dynamic Programming procedure - 2

• Optimal allocation of segments to series

$$\forall i \in [1:I],$$

$$\{\widehat{k}_1, \dots, \widehat{k}_i\} = \underset{k_1 + \dots + k_i = K}{\operatorname{arg\,min}} RSS_K\left(\widehat{\mathbf{T}}^1(k_1), \dots, \widehat{\mathbf{T}}^i(k_i)\right)$$

$$\widehat{\mathbf{T}}(K) = \left\{\widehat{\mathbf{T}}^1(\widehat{k}_1), \dots, \widehat{\mathbf{T}}^I(\widehat{k}_I)\right\}.$$

• This procedure is optimal with a complexity $\mathcal{O}(In^2k_{max} + k_{max}^2I^3)$.

Enrich the model to account for common genomic biases ?

- There exist common genomic biases that are shared by all profiles. How to correct them ?
- The simplest way to model this trend is to introduce a common background function b(t) such that:

$$\forall t \in]t_{k-1}^i, t_k^i], \ Y_i(t) = \mu_{ik} + b(t) + E_i(t).$$

• This produces a new model that mixes piece-wise constant functions and other undetermined functions

Regularization of the trend using splines

• Control the second derivative of **b** using a penalty:

$$\min_{\mathbf{T},\boldsymbol{\mu},\boldsymbol{\theta}} \left\{ \frac{1}{2} \|\mathbf{Y} - \mathbf{T}\boldsymbol{\mu} - \mathbf{X}\mathbf{b}\|_2^2 + \lambda I \int \left[b''(t) \right]^2 \mathrm{d}t \right\}.$$

• $\{\mathbf{W}\}_{jk} = W_j(t_k)$ a *n*-dim. set of natural spline functions: $\mathbf{b} = \mathbf{W}\boldsymbol{\theta}$

$$\min_{\mathsf{T},\boldsymbol{\mu},\boldsymbol{\theta}} \left\{ \frac{1}{2} \| \mathsf{Y} - \mathsf{T}\boldsymbol{\mu} - \mathsf{X} \mathsf{W}\boldsymbol{\theta} \|_2^2 + \lambda I \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{\Omega} \boldsymbol{\theta} \right\},\$$

• The solution is given by:

$$\widehat{\boldsymbol{\theta}} = \left\{ \mathbf{W}^{T}\mathbf{W} + \lambda \mathbf{\Omega} \right\}^{-1} \mathbf{W}^{T} \left(\mathbf{X}^{T} \left[\mathbf{Y} - \mathbf{T} \boldsymbol{\mu}^{[h]} \right] / l \right).$$

	Computing	

Outline

1 Introduction

- 2 Statistical Analysis of single profiles
- 3 Statistical analysis of multiple profiles
- 4 Adaptation to high dimensional computing

Pruning Strategy

- Pruning Strategies reduce the computational burden of Dynamic Programming ([11, 3])
- The idea is to prune the set of candidates while computing potential segmentations
- The complexity is reduced from $\mathcal{O}(Kn^2)$ to $\mathcal{O}(n)$ or $\mathcal{O}(n \log(n))$
- This linearization allows segmentation to be used on very long signals (microarrays, sequencing)

Parallelization in cghseg

- cghseg is a R-package dedicated to segmentation
- Most computers have multi-core architectures (from laptops to many-core servers)
- It has become essential to adapt software to computer architectures

Use straightforward parallelization to perform segmentation on large-numerous signals

Can be paralellized !!!

Parallelization in cghseg

- Compare the observed speedup to theoretical speedup (Amdahl's law [1])
- The speedup of cghseg follows the Amdahl's law when the number of profiles is high
- The gain decreases with the number of profiles due to overheads associated with the used of the parallel R-package

Next Gen. Computing/Next Gen. experiments

- Considering multiple Arrays allows the joint assessment of Copy Number Aberrations/Variations at the cohort level
- We solve the computational issue of joint segmentation using a X2 Stage DP with linearization
- The method is implemented in the cghseg package

<i>n</i> (observations/profile)		20,000			100,000		
<i>I</i> (number of profiles)	256	512	1024	256	512	1024	
Average CPU time (min)	6	15	54	31	70	253	
Memory usage (Gb)	0.4	0.8	1.8	1.7	3.7	7.9	

		Computing	
Conclusio			

Conclusions

- The analysis of copy number profiles has been very challenging from a statistical and computational point of view
- When providing methods, check the scalability (500K probes)
- Developments had to be done using mathematical+computing skills
- Many question arise from these data, in particular the impact of the inter-individual variability
- Project: shift towards functional mixed models for genomics

References

- Gene M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer conference, AFIPS '67 (Spring), pages 483–485. ACM, 1967.
- [2] J. Fridlyand, A. Snijders, D. Pinkel, D.G. Albertson, and A.N. Jain. Hidden markov models approach to the analysis of array CGH data. *Journal of Multivariate Analysis*, 90(1):132–1533, 2004.
- [3] R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association, 107(500):1590–1598, 2012.
- [4] M. Lavielle. Using penalized contrasts for the change-point problem. Signal Processing, 85(8):1501–1510, 2005.
- [5] E. Lebarbier. Detecting multiple change-points in the mean of Gaussian process by model selection. Signal Processing, 85:717–736, 2005.
- [6] J.C. Marioni, N.P. Thorne, and S. Tavare. BioHMM: a heterogeneous hidden Markov model for segmenting array CGH data. *Bioinformatics*, 22(9):1144–1146, 2006.
- [7] P. Nicolas, L. Bize, F. Muri, M. Hoebeke, F. Rodolphe, S. D. Ehrlich, B. Prum, and P. Bessieres. Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models. *Nucleic Acids Res.*, 30(6):1418–1426, Mar 2002.
- [8] AB. Olshen, ES. Venkatraman, R. Lucito, and M. Wigler. Circular binary segmentation for the analysis of array-based DNA copy number data. *Biostatistics*, 5(4):557–572, 2004.
- [9] F. Picard, Lebarbier E., Hoebeke M., Rigaill G., Thiam B., and Robin S. Joint segmentation, calling and normalization of multiple array CGH profiles. *Biostatistics*, 12(3):413–428, 2011.
- [10] F. Picard, S. Robin, M. Lavielle, C. Vaisse, and J-J. Daudin. A statistical approach for CGH microarray data analysis. BMC Bioinformatics, 6:27, 2005.
- G. Rigaill. Pruned dynamic programming for optimal multiple change-point detection. Arxiv:1004.0887, 1:1–9, April 2010.
- [12] H. Willenbrock and J. Fridlyand. A comparison study: applying segmentation to array CGH data for downstream analyses. *Bioinformatics*, 21(22):4084–4091, 2005.
- [13] N. R. Zhang and D. O. Siegmund. A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. *Biometrics*, 63(1):22–32, 2007.