Simulations in Radiation Therapy

D. Sarrut Directeur de recherche CNRS

Université de Lyon, France CREATIS-CNRS ; IPNL-CNRS ; Centre Léon Bérard

Numerical simulations and random processes treat cancer

Cancer 11 millions new/year worldwide 1st mortality cause in France

Principal treatment modalities Surgery, chemotherapy, radiation therapy

Radiation Therapy – cancer treatment

- About 2/3 of all patients
- Treatment in fractions, i.e. 64 Gy in 32 fractions of 2Gy
- Tradeoff: dose to tumor / dose to healthy tissue
- Security margins

Radiation therapy

Advanced technology

IGRT

Image guided Radiation Therapy

Imaging devices

Optical system

СТ

CBCT

PET-CT

Portal

Imaging devices

Optical system

СТ

CBCT

PET-CT

Portal

Medical Physics

- Imaging & Therapy
- Beam Target Detector

- Interaction between particles and matter = physical processes
- Absorbed energy = dose
- (Also biological for the "effect")

Plan

- Introduction
- **Example: dose computation in protontherapy**
- Prompt-gamma imaging device
- Conclusion

Numerical simulations in RT

- Predict absorbed dose
- Optimise treatment plan (100% of treatment)

 $-\frac{dE}{dX} = 4 \, \text{i} N \frac{e^4 Z_{\text{eff}}^2}{m_{\text{e}}c^2 \beta^2} Z_T \left[ln(\frac{2m_{\text{e}}\beta^2}{I(1-\beta^2)}) - \beta^2 \right]$

How?

Several methods:

- Analytical : fast
- O Monte-Carlo : "gold-standard"

Monte-Carlo particles tracking

- O Interaction with matter
- Track particles by particles
- Probability of interaction (cross-section) : stochastic resolution

Example: proton dose

Stoichiometric calibration

	Η	ho (g cm ⁻³)	$w_i(pp)$						
Soft tissue			Н	С	Ν	0	Р	Ca	Others
Lung, blood-filled	-741	0.26	10.3	10.5	3.1	74.9	0.2		1.0
Adipose tissue 3	-98	0.93	11.6	68.1	0.2	19.8			0.3
Adipose tissue 2	-77	0.95	11.4	59.8	0.7	27.8			0.3
Adipose tissue 1	-55	0.97	11.2	51.7	1.3	35.5			0.3
Mammary gland 1	37	0.99	10.9	50.6	2.3	35.8	0.1		0.3
Mammary gland 2	-1	1.02	10.6	33.2	3.0	52.8	0.1		0.3
Brain, cerebrospinal fluid	13	1.01	11.1			88.0			0.9
Adrenal gland	14	1.03	10.6	28.4	2.6	57.8	0.1		0.5
Small intestine (wall)	23	1.03	10.6	11.5	2.2	75.1	0.1		0.5

- Energy changed
- Energy absorbed

Absorbed energy Dose : Energy/mass

Tacking secondary particles

Primary particles

Result : 3D dose distribution

Particles tracking

Millions (billions !) of primaries proton

Tracking:

- Path composed of several steps
- Interaction at each steps (physical / geometrical)
- Change in properties (energy, position, direction)
- O Absorbed dose
- O Other particles emissions (electron etc), also tracked
- Electro-magnetic and nuclear interactions
- Until convergence
- Notion of "statistical uncertainties"

Numerical simulations

Complex situations

- Anatomical variability (toward personalized medicine)
- Numerous "beams" condition (photon, hadron)
- O Imaging / treatment
- Numerical modelling (in-silico)
 - Scene (geometrical components): machine, patient
 - O Physics : beam, particles, interactions
 - O Observable

Timing considerations

- Particles interactions with matter, one by one (one "history")
- Long computation time
- (more or less) easily parallelisable
- Broad range : few minutes to several days/months.

In practice

- Workstation ~10 jobs (threads)
- O Cluster labo ~50 jobs
- O Computing center IN2P3 ~150 jobs
- EGI grid ~300 jobs

Code

- Open source Geant4 toolkit
 - Developed by an international collaboration
 - O Managed at CERN
 - O Nuclear physics
- Open source GATE platform
 - Developed by an international collaboration
 - Focus on Medical Physics (dose & imaging)
- Others toolkit : MCNPX, EGSNRC, Fluka etc
- C++ classes
- Development cycle : design, run, analyze ...

Plan

- Introduction
- Example: dose computation in protontherapy
- Prompt-gamma imaging device
- Conclusion

Dose monitoring via prompt-gamma

- In protontherapy, online dose monitoring is currently being investigated with devices exploiting prompt-gamma
 - [Stichelbaut 2003] [Min 2006] [Testa 2008] [Polf 2009]
 [Moteabbed 2011] and others ...

Prompt-Gamma:

- Emitted during inelastic interactions between incident proton and target nuclei.
- Emitted quasi-instantaneously, decay time < 1 ps
- O Broad energy spectrum : 105 eV ; 107 eV
- Most of them (80%) have enough energy to escape the patient
- Correlated with the deposited dose
- ... but correlation not well known in clinical conditions

GATE simulations

Dose monitoring via prompt-gamma

Results

- Simulations : to help design of the imaging device
- Simulations : to assess new imaging device
- Simulations : to better describe the limits (The main concern seems to be more the counting rate than the spatial resolution).
- Gueth et al, PMB 2013]

Machine learning-based patient specific prompt-gamma dose monitoring in protontherapy

> P. Gueth¹, D. Dauvergne², N. Freud¹, J. M. Létang¹, C. Ray²,
> E. Testa², D. Sarrut^{1,3}
> ¹Université de Lyon, CREATIS, F69622, Lyon, France; INSA-Lyon; CNRS UMR5220; Inserm U1044
> ²Université de Lyon, IPNL, F69622, Lyon, France; Université Lyon 1,
> Villeurbanne; CNRS/IN2P3 UMR5822
> ³Université de Lyon, Centre Léon Bérard, F69373, Lyon, France

Plan

- Introduction
- Example: dose computation in protontherapy
- Prompt-gamma imaging device
- Conclusion

Numerical simulations and random processes treat cancer

Conclusion

- Numerical simulations applied in medical physics
- For cancer treatment
- Imaging : X-ray, PET, SPECT, nuclear imaging etc
- Treatment: RT, hadrontherapy, brachytherapy, radioimmunotherapy etc
- Monte-Carlo simulations for particles tracking
- Open-source software (Geant4, GATE)
- Multi-disciplinary : medicine physic computer science