Analysis of massive acoustic sampling (in ecology)

Jérôme Sueur

MUSÉUM NATIONAL D'HISTOIRE NATURELLE

28/11/2013 Journées du Centre Blaise Pascal Data analysis and modelling in life sciences

Layout

1 Bioacoustics and ecology

Sampling

3 Sample analysis

Data analysis (some results)

6 Conclusion

Layout

1 Bioacoustics and ecology

Sampling

③ Sample analysis

Ø Data analysis (some results)

G Conclusion

Definition

Bioacoustics is a section of life sciences that is in charge of understanding the

emission, propagation and reception of sound by animals

CE Shannon & W Weaver (1949) The mathematical theory of communication.

Some questions addressed in bioacoustics:

What is the vocal repertoire of *Piou piou*?

Some questions addressed in bioacoustics:

- What is the vocal repertoire of Piou piou?
- How is organised the chorus of Piou piou?

C. Curé

- What is the vocal repertoire of Piou piou?
- How is organised the chorus of Piou piou?
- How is the information embedded in the sound produced by Piou piou?

- What is the vocal repertoire of Piou piou?
- How is organised the chorus of Piou piou?
- How is the information embedded in the sound produced by Piou piou?
- How does propagate the song of Piou piou?

- What is the vocal repertoire of Piou piou?
- How is organised the chorus of Piou piou?
- How is the information embedded in the sound produced by Piou piou?
- How does propagate the song of Piou piou?
- How does work the ear of Piou piou?

Some questions addressed in bioacoustics:

- What is the vocal repertoire of Piou piou?
- How is organised the chorus of Piou piou?
- How is the information embedded in the sound produced by Piou piou?
- How does propagate the song of Piou piou?
- How does work the ear of Piou piou?
- What are the effect of noise on the acoustic display of Piou piou?

- What is the vocal repertoire of Piou piou?
- How is organised the chorus of Piou piou?
- How is the information embedded in the sound produced by Piou piou?
- How does propagate the song of Piou piou?
- How does work the ear of Piou piou?
- What are the effect of noise on the acoustic display of Piou piou?
- How did sound signals evolved in a Piou group?

- What is the vocal repertoire of Piou piou?
- How is organised the chorus of Piou piou?
- How is the information embedded in the sound produced by Piou piou?
- How does propagate the song of Piou piou?
- How does work the ear of Piou piou?
- What are the effect of noise on the acoustic display of Piou piou?
- How did sound signals evolved in a Piou group?

Bioacoustics can be considered therefore as:

 $interdisciplinary \ ethology, \ neurology, \ biomechanics, \ evolution, \ paleontology, \ \dots$

species-centered organ, individual, population, species

Change of scale

Drawing by Jean Poinsignon

Change of scale

Change of scale

Breakdown the species-centered framework of bioacoustics to investigate ecological questions with sound

Change of scale

Breakdown the species-centered framework of bioacoustics to investigate ecological questions with sound

Individual	\rightarrow	Guild
Population		Community
Species		Landscape

Change of scale

Three important challenges linking acoustics and ecology:

to assess and monitor animal diversity

Change of scale

Three important challenges linking acoustics and ecology:

- to assess and monitor animal diversity
- e to understand animal species interactions

Change of scale

Three important challenges linking acoustics and ecology:

- to assess and monitor animal diversity
- e to understand animal species interactions
- to measure and mitigate human noise pollution on animal vocalisations

Change of scale

► ...

to assess and monitor animal diversity

- ▶ Who are you?
- Where are you?
- When are you there?
- How many are you?
- What do you do?

K-H Frommolt

MUSEUN NATIONAL D'HISTOIRE NATURELLE

Change of scale

- e to understand animal species interactions
- Do you interact acoustically?
- If so, do you compete or collaborate through sound?
- How do you share the acoustic ressource?
- What is the size and shape of your acoustic niche?
- What are the dynamics of your acoustic interactions?

namesofbirds.net

Change of scale

►

- Ito measure and mitigate human noise pollution on animal vocalisations
- Do you care about noise?
- Does noise change your behaviour / your physiology / your survival rate?
- Can we reduce the impact of noise in natural habitats?

MUSÉUN NATIONAI D'HISTOIRE NATURELLE

Change of scale

These challenges imply a change of scale in:

sampling

Change of scale

These challenges imply a change of scale in:

- sampling
- sample analysis

Change of scale

These challenges imply a change of scale in:

- sampling
- sample analysis
- data analysis

Layout

Bioacoustics and ecology

Ø Sampling

③ Sample analysis

Ø Data analysis (some results)

G Conclusion

Sampling Recording at a large scale

Species-centered bioacoustics to record a specific individual of a targeted species: shotgun microphone or parabola

². Aimar

Sampling Recording at a large scale

No more fore and background sound. To record as much as possible sound. Omnidirectional microphones covering the **widest area** during the **longest time period**

G. Pavan

Iow energy consumption

- Iow energy consumption
- Iow internal noise

- Iow energy consumption
- Iow internal noise
- high data storage capacity

- Iow energy consumption
- Iow internal noise
- high data storage capacity
- fully programmable

- Iow energy consumption
- Iow internal noise
- high data storage capacity
- fully programmable
- resistant to harsh weather conditions

- Iow energy consumption
- Iow internal noise
- high data storage capacity
- fully programmable
- resistant to harsh weather conditions
- remotely accessible

- Iow energy consumption
- Iow internal noise
- high data storage capacity
- fully programmable
- resistant to harsh weather conditions
- remotely accessible

...
Passive Acoustic Monitoring (PAM)

- Iow energy consumption
- Iow internal noise
- high data storage capacity
- fully programmable
- resistant to harsh weather conditions
- remotely accessible

Þ ...

at a low cost!

Microphone recording station (SM2)

Recording at a large scale

Monitoring of a mediterrenean soundscape (University of Urbino, Italy)

Farina & Pieretti, 2011

Recording at a large scale

Hydrophone recording station (AURAL M2)

M U S É U M NATIONAL D'HISTOIRE NATURELLE

J. Sueur (MNHN)

Recording at a large scale

Cetacean occurrence and seasonality monitoring in the Pacific Islands Region (NOAA, USA)

Recording at a large scale Research and money...

Contact OSC to discuss your Passive Acoustic Monitoring requirements

PASSIVE ACOUSTIC MONITORING (PAM) SYSTEMS

Passive acoustic monitoring (PAM) systems are underwater hydrophones (either towed arrays or static moored systems), top-end processing units and software that detect and process underwater sound.

Deployment and setup of one of Ocean Science Consulting's passive acoustic monitoring equipment on streamer sliding collars. © OSC 2011.

Ocean Science Consulting (OSC) Ltd. uses specialised passive acoustic monitoring systems to detect the vocalisations of whates, dolphins, porpoises and other marine mammals, during seismic, pile-driving, drilling, naval exercises or other anthropogenic (mam-made) industrial activities that produce loud underwater noise. M U S É U M NATIONAL D'HISTOIRE NATURELLE

J. Sueur (MNHN)

Acoustics and ecology

Sampling Files

Quite big datasets...

- ▶ $10 10^2$ recorders
- ▶ 10 10⁵ files
- ▶ 10 10³ Go

Sampling Files: file managing

shell	R
cd	setwd()
rm	file.remove()
ср	file.copy()
mv	<pre>file.rename()</pre>
ls	dir()
any command	system()

Sampling Files: file metadata

File name:

K-XI_20101112_013000.wav K-XI : recorder ID 20101112 : recording date [yyyymmdd] 013000 : recording time [hhmmss]

File characteristics:

@left : left channel @right : left channel @stereo : stereo/mono @samp.rate : sampling rate (f.i. 44100 Hz) @bit : digital depth (f.i. 16 bit)

 \Rightarrow categorization, selection, sort

Layout

Bioacoustics and ecology

Sampling

3 Sample analysis

O Data analysis (some results)

G Conclusion

with:

s signal

with:

- s signal
- f transform

with:

- s signal
- f transform
- D (dis)similarity index β diversity

with:

- s signal
- f transform
- D (dis)similarity index β diversity
- R richness / evenness index α diversity

tuneR: to read in/out .wav files

- tuneR: to read in/out .wav files
- seewave: for the parametrization of sound

seewave~

- since 2008
- > 110 end-user functions
- time and frequency analysis (Fourier decomposition, etc)
- sound visualization
- sound synthesis

- tuneR: to read in/out .wav files
- seewave: for the parametrization of sound

seewave~

- since 2008
- ▶ > 110 end-user functions
- time and frequency analysis (Fourier decomposition, etc)
- sound visualization
- sound synthesis
- ade4 for the analysis of ecological data

seewave~

DESCRIPTION INSTALLATION DOCUMENTATION EXAMPLES CITATIONS LIST

29 / 52

CBP

M U S É U M NATIONAL D'HISTOIRE

....

bioacoustics (frogs, fish, birds, insects, mammals)

- bioacoustics (frogs, fish, birds, insects, mammals)
- soundscape ecology

- bioacoustics (frogs, fish, birds, insects, mammals)
- soundscape ecology
- city noise pollution

- bioacoustics (frogs, fish, birds, insects, mammals)
- soundscape ecology
- city noise pollution
- medical sciences (detection and prediction of alzheimer diseases)

- bioacoustics (frogs, fish, birds, insects, mammals)
- soundscape ecology
- city noise pollution
- medical sciences (detection and prediction of alzheimer diseases)
- psychology (emotion regulation)

MUSÉUN NATIONA D'HISTOIRI NATURELLI

- bioacoustics (frogs, fish, birds, insects, mammals)
- soundscape ecology
- city noise pollution
- medical sciences (detection and prediction of alzheimer diseases)
- psychology (emotion regulation)
- speech analysis

- bioacoustics (frogs, fish, birds, insects, mammals)
- soundscape ecology
- city noise pollution
- medical sciences (detection and prediction of alzheimer diseases)
- psychology (emotion regulation)
- speech analysis
- musicology (timber analysis in musical acoustics)

MUSÉUN NATIONA D'HISTOIRI NATURELLI

Code example:

```
> library(tuneR)
> library(seewave)
> files <- dir('mydirectoy', pattern='*.wav')
> n <- length(files)
> results <- numeric(n)
> for i in (1: length(files)){
+ s <- readWave(files[i])
+ results[i] <- sh(meanspec(s))
}
> head(results)
> [1] 0.88 0.72 0.88 0.90 0.55 0.00
```

Indices

 α indices to parametrize a single sample

- ▶ entropy-like: H, H_f, H_t, AR, H', AEI, ADI
- complexity: ACI
- ▶ spectral: NDSI, bioPeak, ρ , NP
- ▶ amplitude: L_×, M

MUSÉUM

....

Indices

 β indices to comapare a pair of sample

 $\blacktriangleright D, D_f, D_t, D_{cf}, KS, KL, \dots$

► KV

Layout

Bioacoustics and ecology

Sampling

③ Sample analysis

Data analysis (some results)

G Conclusion

Uni-dimensional analysis

Spatial sampling

mature forest

forest edge

field crop

Uni-dimensional analysis

Spatial sampling

mature forest

forest edge

young forest

Uni-dimensional analysis

Uni-dimensional analysis

Redundancy analysis

Uni-dimensional analysis

M U S É U M NATIONAL D'HISTOIRE NATURELLE

J. Sueur (MNHN)

Uni-dimensional analysis

Uni-dimensional analysis

Recording period number

Multi-dimensional analysis

Multi-dimensional analysis

CNRS research station (French Guiana)

Data analysis (some results) Multi-dimensional analysis

Multi-dimensional analysis with ade4: Recipice:

 $\textcircled{0} \quad \text{Computation of a 10, 731} \times 10, 731 \text{ distance matrix}$

Data analysis (some results) Multi-dimensional analysis

- $\textcircled{0} \quad \text{Computation of a 10, 731} \times 10, 731 \text{ distance matrix}$
- Principal Coordinate Analysis (PCO) on the matrix

Multi-dimensional analysis

- $\textcircled{0} \quad \text{Computation of a } 10,731 \times 10,731 \text{ distance matrix}$
- Principal Coordinate Analysis (PCO) on the matrix
- Principal Component Analysis on the PCoA coordinates with respect to instrumental variables

Multi-dimensional analysis

- $\textcircled{0} \quad \text{Computation of a } 10,731 \times 10,731 \text{ distance matrix}$
- Principal Coordinate Analysis (PCO) on the matrix
- Principal Component Analysis on the PCoA coordinates with respect to instrumental variables
 - time of recording (understory / canopy)

Multi-dimensional analysis

- $\textcircled{0} \quad \text{Computation of a } 10,731 \times 10,731 \text{ distance matrix}$
- Principal Coordinate Analysis (PCO) on the matrix
- Principal Component Analysis on the PCoA coordinates with respect to instrumental variables
 - time of recording (understory / canopy)
 - vertical position (understory / canopy)

Multi-dimensional analysis

M U S É U M NATIONAL D'HISTOIRE NATURELLE

J. Sueur (MNHN)

Acoustics and ecology

CBP 46 / 52

Multi-dimensional analysis

M U S É U M NATIONAL D'HISTOIRE NATURELLE

J. Sueur (MNHN)

Acoustics and ecology

CBP 47 / 52

Layout

Bioacoustics and ecology

Sampling

③ Sample analysis

O Data analysis (some results)

6 Conclusion

Upstream

- equipment (smartphones, tablets)
- sampling (wireless network, national recorder network)
- management of files (and of over-sampling...)
- automatic selection of uncorrupted audio files

Upstream

- equipment (smartphones, tablets)
- sampling (wireless network, national recorder network)
- management of files (and of over-sampling...)
- automatic selection of uncorrupted audio files

Downstream

- signal analysis (filters, relevant audio parameters identification)
- indices (resistant to noise, higher reliability)

Conclusion

- change of scale is not inherent to bioacoustics
- transfer of techniques and knowledge towards any acoustic environment (natural or not)
- CNRS MASTODONS grant: Scaled Acoustic BIODiversity platform [SABIOD, PI H Glotin]

Sandrine Pavoine (MNHN) Alexandra Rodriguez (MNHN) Dimitrios Bormpoudakis (Aristotle University) Olivier Hamerlynck (Centre for Ecology and Hydrology) Frédéric Jiguet (MNHN) Philippe Gaucher (CNRS) Amandine Gasc (MNHN) Laurent Lellouch (U. Toulon/MNHN) Marion Depraetere (M2 EBE) Stéphanie Duvail (IRD) Philippe Grandcolas (CNRS) Hervé Glotin (U. Toulon) merci pour votre écoute !

© CNRS

Tanzania | French Guiana | New-Caledonia | India | France (mainland)